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1. I n t r o d u c t i o n  

In differential geometry, the curvature of a Riemannian manifold (M, g) plays a 

fundamental role, and, as is well known, the sectional curvatures of a manifold 

determine the curvature tensor R completely. For any point p E M and any 

plane section 7r C_ TpM, the sectional curvature K(Tr) is defined by K(Tr) = 

g(R(X, Y)Y, X), where X, Y are orthonormal vector fields in 7r. In such a case, we 

also denote K(Tr) by K ( X  A Y). A Riemannian manifold with constant sectional 

curvature c is called a rea l - space- form,  and its curvature tensor satisfies the 

equation 

R( X, Y)Z = c{g(Y, Z)X - g( X, Z)Y }. 

Models for these spaces are the Euclidean spaces (c = 0), the spheres (c > 0) and 

the hyperbolic spaces (c < 0). 

A similar situation can be found in the study of complex manifolds from a Rie- 

mannian point of view. If (M, J, g) is a Kaehlerian manifold with constant holo- 

morphic sectional curvatures K(X  A JX) = c, then it is said to be a complex-  

space - fo rm and it is well-known that  its curvature tensor is given by 

c 
n(x ,  Y)Z = z ) x  - g(x, z )Y  

+ g(X, JZ )JY  - g(Y, JZ )JX  + 2g(X, JY)JZ}.  

The models now are C n, C P  n and C H  n, depending on c = 0, c > 0 or c < 0. 

More generally, if the curvature tensor of an almost Hermitian manifold M 

satisfies 

R(X, Z)Z =F, {g(Y, Z)X - g(X, Z)Y} 

+ F2{g(X, JZ )JY  - g(Y, JZ )JX  + 2g(X , JY)JZ},  

F1, F2 being differentiable functions on M, then M is said to be a genera l i zed  

c o m p l e x - s p a c e - f o r m  (see [16, 18]). In [16], an important obstruction for such a 

space was presented by F. Tricerri and L. Vanhecke: If M is connected, dim(M) > 

6, and ['2 is not identically zero, then M is a complex-space-form (in particular, 

F1 and F2 must be constant). Nevertheless, there are examples of 4-dimensional 

generalized complex-space-forms with non-constant functions, such as those given 

by Z. Olszak in [10]. Many other authors have studied these manifolds and their 

submanifolds. 

On the other hand, Sasak ian - spaee - fo rms  play a similar role in contact 

metric geometry to that  of complex-space-forms (see the preliminaries section 
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for more details). For such a manifold, the curvature tensor is given by 

n(X,  Y)Z = L~-~ {9(Y, Z)X - g(X, Z)Y} 

c - - 1  
+ - - ~  {g(X, CZ)¢Y - 9(Y, CZ)¢X + 29(X, CY)¢Z} 

(1.1) 

+ - , 7 ( y ) , 7 ( z ) x  

+ g ( x ,  - g (y ,  

These spaces can also be modeled, depending on c > - 3 ,  c = - 3  or c < - 3 .  

In this paper, we will study almost contact metric manifolds satisfying a similar 

equation, in which the constant quantities (c+ 3)/4 and ( c -  1)/4 are replaced by 

differentiable functions. We call such a space a g e n e r a l i z e d  $ a s a k i a n - s p a e e -  

f o r m .  

After a section containing some background on almost contact metric geom- 

etry, we introduce generalized Sasakian-space-forms, give some examples and 

we prove some basic properties. For instance, we prove that  every generalized 

Sasakian-space-form with a K-contact  structure is a Sasakian manifold, and, if 

the dimension is > 5, a Sasakian-space-form. We also study the possibility of 

a generalized Sasakian-space-form being a contact metric manifold. Next, we 

present two sections mainly devoted to giving more interesting examples of gen- 

eralized Sasakian-space-forms, with non-constant functions. To do so, we use a 

wide variety of geometric constructions, such as Riemannian submersions, prod- 

uct manifolds, warped products, conformal transformations, D-homothetic defor- 

mations and D-conformal deformations. Moreover, we also obtain some further 

results on generalized complex-space-forms. 

2. P r e l i m i n a r i e s  

In this section, we recall some definitions and basic formulas which we will use 

later. For more background on almost contact metric manifolds, we recommend 

the reference [2]. 

An odd-dimensional Riemannian manifold (M, 9) is said to be an a l m o s t  con-  

t a c t  m e t r i c  m a n i f o l d  if there exist on M a (1, 1) tensor field ¢, a vector 

field ~ (called the s t r u c t u r e  v e c t o r  field) and a 1-form ~ such that  ~(~) = 1, 

¢2(X) = - X  + ~(X)~ and 9(¢X, CY) = 9(X, Y) - ~/(X)~/(Y), for any vector 

fields X, Y on M. In particular, in an almost contact metric manifold we also 

have ¢~ = 0 and 7/o ¢ = 0. 

Such a manifold is said to be a c o n t a c t  m e t r i c  manifold if d~ = ~, where 

• (X, Y) = 9(X, CY) is called the f u n d a m e n t a l  2 - f o r m  of M. If, in addition, 
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is a Killing vector field, then M is said to be a K - c o n t a c t  mani fo ld .  It is 

well-known that  a contact metric manifold is a K-contact  manifold if and only if 

V x {  = -OX,  for any vector field X on M. In a K-contact  manifold, we have 

(2.1) (Vx¢)Y = R(~, x ) r ,  

for any X, Y (cf. [2], pp. 92-94). 

On the other hand, the almost contact metric structure of M is said to be 

n o r m a l  if [¢, ¢](X, Y) = -2d~(X, Y)~, for any X, Y, where [¢, ¢] denotes the 

Nijenhuis torsion of ¢, given by [¢, el(X, Y) = ¢2[X, Y] + [¢X, CY] - ¢[¢X, Y] 

- ¢ [ x ,  Cy]. 
A normal contact metric manifold is called a Sasak ian  man i fo ld .  It can be 

proved that  a Sasakian manifold is K-contact ,  and that  an almost contact metric 

manifold is Sasakian if and only if 

(2.2) (Vx¢)Y = g(x ,  Y)~ - ~(Y)X,  

for any X, Y. Moreover, for a Sasakian manifold the following equation holds: 

(2.3) a ( x ,  Y)~ = ~ ( Y ) X  - ~ ( x ) ~ :  

In [12], J. A. Oubifia introduced the notion of a trans-Sasakian manifold. An 

almost contact metric manifold M is a t r a n s - S a s a k i a n  m a n i f o l d  if there exist 

two functions a and fl on M such that  

(2.4) ( v x ¢ ) Y  = ~ 0 ( x ,  r ) ¢  - ~(Y)X)  + 9 0 ( ¢ x ,  Y)~ - ~(Y)¢X) ,  

for any X, Y on M. In particular, from (2.4) it is easy to see that  the following 

equations hold for a trans-Sasakian manifold: 

(2.5) 

(2.6) 

v x ~  = - ~ ¢ x  + ~ ( x  - n(x)~), 

d~ = a¢,. 

In particular, if/3 = O, M is said to be an a -S asak i an  man i fo ld .  Sasakian 

manifolds appear as examples of a-Sasakian manifolds, with a = 1. 

Another important  kind of trans-Sasakian manifolds is that  of c o s y m p l e c t i c  

man i fo lds ,  obtained for a = ~3 = O. In fact, it can be proved that  this defini- 

tion is equivalent to M being normal with 7/ and ~ closed forms; cosymplectic 

manifolds were defined this way in [1]. From (2.5) we have 

(2.7) Vx~  = O, 
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which, in particular, implies that  ~ is a Killing vector field for a cosymplectic 

manifold. Therefore, it is affine and hence 

(2.8) R(X,~)Y = V x V y ~  - V v x y ~  = 0 .  

On the other hand, if a = 0, M is said to be a /3 -Kenmotsu  mani fo ld .  

Kenmotsu manifolds, defined in [7], are particular examples with/3 = 1. 

Actually, in [9], Marrero showed that  a trans-Sasakian manifold of dimension 

greater than or equal to 5 is either a-Sasakian,/3-Kenmotsu or cosymplectic. 

Given an almost contact metric manifold ( M , ¢ , ( , % g ) ,  a C-section of M 

at p E M is a section ?r C_ TpM spanned by a unit vector Xp orthogonal to 

~p, and CX v, The C-sect ional  c u r v a t u r e  of 7r is defined by K(X A CX) = 

R(X, CX; CX, X). A Sasakian manifold with constant C-sectional curvature c is 

called a Sasak ian-space- fo rm.  In such a case, its Riemann curvature tensor is 

given by equation (1.1). 

Finally, let us point out that  all the functions we will refer to during this paper 

will be differentiable functions on the corresponding manifolds. 

3. Def in i t ion  a n d  basic  p r o p e r t i e s  

Given an almost contact metric manifold (M, ¢, ~, ~, g), we say that  M is a 

gene ra l i zed  Sasak i an - space - fo rm if there exist three functions f l ,  f2 and 

f3 on M such that  

R(X, Y)Z =f~ {9(Y, Z)X - g(X, Z)Y} 

+ f2{g(X, ¢Z)OY - g(Y, ¢Z)OX + 2g(X, CY)OZ} 
(3.1) 

+ - , 7 ( Y ) , 7 ( z ) x  

+ g ( X ,  - g ( Y ,  

for any vector fields X, Y, Z on M, where R denotes the curvature tensor of M. 

In such a case, we will write M ( f l ,  f2, f3). 
This kind of manifold appears as a natural generalization of the well-known 

Sasakian-space-forms M(c), which can be obtained as particular cases of gener- 

alized Sasakian-space-forms, by taking f l  = (c + 3)/4 and f2 = f3 = (c - 1)/4. 

Moreover, we can also find some other trivial examples: 

Example 3.1: A cosymplectic-space-form, i.e., a cosymplectic manifold with con- 

stant C-sectional curvature c, is a generalized Sasakian-space-form with f l  = f2 = 

f3 = c/4 (see, e.g., [S]). 
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Example 3.2: A Kenmotsu-space-form, i.e., a Kenmotsu manifold with constant 

C-sectional curvature c, is a generalized Sasakian-space-form with f] = (c - 3)/4 

and f2 = f3 = (c + 1)/4 (see [7]). 

Example 3.3: An almost contact metric manifold is said to be an a l mo s t  

C(a ) -man i fo ld  [6] if its Riemann curvature tensor satisfies 

R(X,  Y, Z, W) =R(X,  Y, CZ, CW) 

+ w)g(Y, z) - g(x,  z)9(z, w)  

+ g(X, ¢Z)g(Z, ¢W) - 9(X, ¢W)g(Y, ¢Z)}, 

for any vector fields X, Y, Z, W on M, where a is a real number. Moreover, if 

such a manifold has constant C-sectional curvature equal to c, then its curvature 

tensor is given by 

c + 3a 2 
R ( X , Y ) Z  =. 4 { 9 ( Y , Z ) X -  g ( X , Z ) r ) }  

C - -  OL 2 

(3.2) + ~ { g ( X ,  CZ)¢Y - g(Y, CZ)¢X + 2g(Z, CY)¢Z} 
o 

+ - 

+ g ( x ,  - 9 ( L  

and so it is a generalized Sasakian-space-form with f l  = (c + 3a2)/4 and f2 = 

f3 = (e - a2)/4.  

As we can see from the previous examples, we find generalized Sasakian-space- 

forms with very different structures. The following results give us more infor- 

mation about the relationship between the structure of such a manifold and the 

functions f l ,  f2, fa. In this sense, we have the following theorem from [3], which 

we adapt to our notation: 

THEOREM 3.4: Let (M, ¢, {, 7/, g) be a connected generalized Sasakian-space- 

form with f2 = f3 not identically zero. I f  dim(M) > 5 and g(X, Vx{) = 0 for 

any vector field X orthogonal to ~, then fl  and f2 are constant functions and 

fl  - f2 > O. Moreover, i f  f l  - f2 = 0, then (M, ¢, ~, 71, g) is a cosymplectic- 

space-form and if f l  - f2 = a S > 0 then (M, ¢, ~, r/, 9) or (M, - ¢ ,  ~, ~/, 9) is an 

a-Sasakian manifold with constant C-sectional curvature c and curvature tensor 
satisfying (3.2). 

Now, we are interested in the study of the structure of generalized Sasakian- 

space-forms with f2 # f3, in general. We first recall a well-known fact (see, e.g., 

[21, p. 92). 
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LEMMA 3.5: In a K-contact manifold, the sectional curvature of a plane section 

containing ~ is equal to 1. 

PROPOSITION 3.6: Let M ( f l , f 2 , f3) be a generalized Sasakian-space-form. If  M 

is a K-contact manifold, then f3 = f l  - 1. 

Proof: It  is just  necessary to take into account that ,  from (3.1), R ( X ,  ~, ~, X )  = 

f l  - f3, for any unit vector field X orthogonal to ~, and to apply Lemma 3.5. 
| 

In particular,  as every Sasakian manifold is a K-contac t  manifold, we obtain 

from the above proposition tha t  if M ( f l ,  f2,f3) is a Sasakian manifold, then 

f3 = f l  - 1. Moreover, we have: 

THEOREM 3.7: Every generalized Sasakian-space-form with a K-contact struc- 

ture is a Sasakian manifold. 

Proo~ Given a K-contac t  generalized Sasakian-space-form M( f l, f2, f3), equa- 

tion (2.1) is satisfied. Hence a direct computat ion using (3.1) gives ( V x ¢ ) Y  = 

(f l  - f 3 ) (g (X ,Y)~  - r j (Y)X) ,  for any vector fields X , Y  on M. But, by virtue 

of Proposit ion 3.6, f l  - f3 = 1, and so the above equation means that  M is a 

Sasakian manifold. | 

But,  what is the situation if M is a contact metric manifold? To give an answer 

to this question, we need another  result from [2], p. 92: 

LEMMA 3.8: A contact metric manifold M 2~+1 is a K-contact manifold i f  and 

only i f  S(~, ~) = 2n, where S denotes the Ricci curvature tensor. 

THEOREM 3.9: Let M ( f l ,  f2, f3) be a generalized Sasakian-space-form. If  M is 

a contact metric manifold with f3 = f l  - 1, then it is a Sasakian manifold. 

Proof: From (3.1), it can be checked that  S(~,~) = 2n(f l  - f3) = 2n, since 

f3 = f l  - 1. Therefore, by virtue of Lemma 3.8, we have tha t  M is a K-contac t  

manifold, and so it is a Sasakian manifold, by Theorem 3.7. | 

The condition in the above theorem of M being a contact metric manifold is 

necessary. For instance, if N(c) is a complex-space-form, and we consider the 

warped product  M = (-Tr/2,  rr/2) x f  N,  with f ( t )  = cost,  we will prove in 

Theorem 4.8 that  M is a generalized Sasakian-space-form with functions 

c - 4 sin 2 t c c - 4 sin 2 t 
f l -  4cos 2t  ' f 2 -  4cos 2 t '  f 3 -  4cos 2t  1. 
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Therefore, in this case f3 = f l  - 1 but,  as we will show in Proposition 4.9, M is 

a (0, - tan t) trans-Sasakian manifold. 

Moreover, we can obtain more information about  f l  - f3 for a contact metric 

manifold: 

THEOREM 3.10: Let M(fl ,  f~, f3) be a generalized Sasakian-space-form. ff  M 
is a contact metric manifold, then fl - :]'3 is constant on M. 

Proo£ From (3.1), it is easy to see tha t  R(X, Y)¢ = (fl  -f3){~(Y)X- ~(X)Y},  

for any vector fields X, Y on M. Therefore, we just conclude by using Theorem 

10 of [13], which implies tha t  f l  - f3 must  be constant on the manifold. | 

We now give some results concerning some identities satisfied by the curvature 

tensor of a generalized Sasakian-space-form. The first two propositions can be 

obtained directly from (3.1): 

PROPOSITION 3.11: The C-sectional curvature of a generalized Sasakian-space- 

form M(I1, f2, f3) is f l  + 3f2. 

PROPOSITION 3.12: Let M(fl , f2,  f3) be a generalized Sasakian-space-form. 
Then, 

R(X, Y, Z, W ) - R ( X ,  Y, CZ, CW) = 

(L - f2 ) {9 (x ,  w)g(Y,  z )  - 9 ( x ,  z)g(y, w) 
+ g(X, CZ)g(Y, CW) - g(X, CW)g(Y, CZ)} 

+ (13 - I2){~(X)~(Z)g(Y, W) - ~(Y)~(Z)g(X, W) 

+ - g(y, 

for any vector fields X, Y, Z, W on M. 

In particular,  if f2 = f3 and f l  - f2 is equal to a constant a ,  then M is a 

C(a)-manifold.  

The following result is proved in [2], pp. 94-95: 

LEMMA 3.13: Let M be a Sasakian manifold. I fweput  

T)( X, Y, Z, W) =&l( X, Z)g(Y, W) - &I( X, W)g(Y, Z) 

- d~(Y, Z)g(X, W) + d~(Y, W)g(X, Z), 

then we have 

(3.3) R(X, Y, Z, CW) + R(X, Y, CZ, W) = - P ( X ,  Y, Z, W), 
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for any vector fields X, Y, Z, W on M, and 

(3.4) R(OX, Of, ¢Z, ¢W) = R(X, Y, Z, W), 

(3.5) R(X, CX, Y, Of)  = R(X, Y, X, Y) + R(X, ¢]I, X, O f)  - 2/~(X, Y, X, CY), 

for any X, Y, Z, W orthogonal to ~. 

Let us now denote 

P(X, Y, Z, W) =g(X, CZ)g(V, W) - g(X, CW)g(V, Z) 

- g(r, Cz)g(x ,  w )  + g(r, Cw)9(x ,  z ) ,  

for any vector fields X, Y, Z, W on M. In particular, if M is a contact metric 

manifold, P = P.  From (3.1) we get an equation similar to (3.3): 

PROPOSITION 3.14: Let M(fl , f2, f3)  be a generalized Sasakian-space-form. 
Then, 

(3.6) R(X,Y ,Z ,¢W)  + R ( X , Y , ¢ Z , W )  = - ( f l  - f2)P(X,Y,Z,W),  

for any X, Y, Z, W orthogonal to ~. 

Hence, we can state the following result: 

THEOREM 3.15: Let M(fl ,  f2, f3) be a generalized Sasakian-space-form. If M 
is a Sasakian manifold, then f2 = f3 = fl - 1. 

Proof." The equality f2 = f l  - 1 is directly obtained from (3.3) and (3.6). On 

the other hand, f3 = f l  - 1 comes from Proposition 3.6. | 

By using the above theorem, we can obtain an important  consequence: 

COROLLARY 3.16: Let M (f l ,  f2, fs) be a connected generalized Sasakian-space- 
form. If dim(M) >_ 5 and M is K-contact, then M is a Sasakian-space-form. 

Proof: From Theorem 3.7, we know that  M is a Sasakian manifold, and so, by 

virtue of Theorem 3.15, f2 = f3. If f2 is not identically zero, then by applying 

Theorem 3.4, we have that  f l  and f2 (and so f3) must be constant functions on 

M. Now, from Proposition 3.11 we deduce that  the C-sectional curvatures of M 

are constant, and therefore, M is a Sasakian-space-form. 

On the other hand, if f2 = f3 = 0, then from Theorem 3.15 we know that  

f l  = 1 and so M is a real-space-form with constant sectional curvature 1. In 

particular, M is a Sasakian-space-form with constant C-sectional curvature 1. 
| 
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Furthermore, the above result is also true if M is a contact metric manifold 

with f3 = f l  - 1, by virtue of Theorem 3.9. Therefore, to find connected gen- 

eralized Sasakian-space-forms with non-constant functions, we must work with 

other classes of almost contact metric manifolds. We will see an ample number 

of examples in the following sections. 

On the other hand, we can check that  (3.4) holds for any generalized Sasakian- 

space-form, by making the corresponding calculations from (3.1): 

PROPOSITION 3.17: Let M (fl, f2, f3 ) be a generalized Sasakian-space-form. 
Then, we have 

R(bX, bY, bZ, bW) = R(X, Y, Z, W), 

for any vector fields X, Y, Z, W orthogonal to ~. 

In a similar way, with respect to (3.5) we can prove: 

PROPOSITION 3.18: Let M(fl , f2, f3)  be a generalized Sasakian-space-form. 
Then, we have 

R(X, bX, Y, CY) = R(X, ]I, X, Y) + R(X, bY, X, bY) - 2(fl - f2)P(X, Y, X, bY), 

for any vector fields X, Y orthogonal to ~. 

Also from (3.1) we can obtain a further result concerning curvature identities. 

PROPOSITION 3.19: Let M(fl , f2, f3)  be a generalized Sasakian-space-form. 
Then, the equation 

R(x, Y, z, w) = R(bx, bY, z, w)  + R(bx, Y, bz, w)  + R(bX, Y, z, bW) 

holds for any X, Y, Z, W if and only if fl = f3. 

In particular, if M is Sasakian, the above equation does not hold. 

4. Examples  and main results 

In this section, we will show some different non-trivial examples of generalized 

Sasakian-space-forms. 

Let (M, ¢, ~, 7/, g) be an almost contact metric manifold and (N, J, G) a Kaehle- 

rian manifold, with dimensions 2n + 1 and 2n respectively, and suppose there 

exists a Riemannian submersion 

~r: (M, ¢, ~, 7/, g) > (N,J,G) 
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satisfying 

i) Vx = Span{~x}, ii) (JX)* = CX*, 

for any point x E M and any vector fields X, Y on N, where Vx is the vertical 

subspace at x and we denote by * the horizontal lift with respect to the connection 

~. Under these conditions we also have g(X*, Y*) = G(X, Y).  Let us denote by 

V and V ~ the Riemannian connections associated with g and G, and by R and 

R ~ the corresponding Riemann curvature tensors. 

PROPOSITION 4.1: Under the above conditions, if M is an (a, 8) trans-Sasakian 

manifold and N(F1, F2) is a generalized complex-space-form, then we have 
(4.1) 
It(X*, Y*)Z* = (F1 o 7r){g(V*, Z*)X* - g(X*, Z*)Y* } 

+ ((F2 o ~r) - a2){g(X *, CZ*)¢Y* - g(Y*, CZ*)¢X* + 2g(X*, CY*)¢Z*} 

+ aj3{g(X*, CZ*)Y* - g(Y*, CZ*)X* + 2g(X*, ¢Y*)Z* 

- g(X*, Z*)¢V* + g(Y*, Z*)¢X*} +/32{g(X *, Z*)V* - g(V*, Z*)X*} 

- x*(~)g(v*, CZ*)~ - x*(9)g(v*, z*)~ 
+ Y*(a)g(X*,¢Z*)~ + Y*(3)g(X*, Z*)~, 

for any vector fields X, Y, Z on N. 

Proof" 

(4.2) 

(4.3) 

By virtue of O'Neill's equations [11] and (2.5), we have 

Vx. Y* = (v~.Y)* + ~g(¢x*, Y*)~ - ~g(X*, Y*), 

[x*,y*]  = IX, Y]* + 2~g(¢x*,Y*)~, 

for any X, Y vector fields on N. Then, (4.1) can be obtained with a long straight- 

forward computation from (4.2)-(4.3) and the formula of the curvature tensor of 

a generalized complex-space-form, by taking also into account that  [Z*,~] = 0 

and so V~Z* = Vz.~,  for any vector field Z on N. | 

In particular, M is a Sasakian manifold if and only if a = 1 and/3 = 0. In 

such a case, (4.1) reduces to 

R(X*, Y*)Z* =(F1 o 7r){g(Y*, Z*)X* - g(X*, Z*)Y*} 

(4.4) + ((F2 o ~) - 1){g(X*, CZ*)¢Y* - g(Y*, CZ*)¢X* 

+ 2g(X*, CY*)¢Z* }, 

and we have: 
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THEOREM 4.2: Under the above conditions, if M is a Sasakian manifold, then 

it is a generalized Sasakian-space-form M(fx,  f2, f3) with functions 

f l - - F l O T r ,  f 2 - ( F 2 o T r ) - l ,  f 3 = ( F l O T r ) - l .  

Proof Given X, Y, Z vector fields on M, we can write them as X = )(  + r~(X)~, 

Y = Y + q(Y)~ and Z = Z + ~(Z)~, where X, Y, Z are horizontal vector fields 

on M. By choosing a local orthonormal frame of basic vector fields on M and 

by virtue of the linearity of both sides of equation (4.4), it can be proved that  it 

is also satisfied by general horizontal vector fields, and so by X, Y, Z. 

On the other hand, from (2.1), (2.2) and (2.3), and by using the linearity of 

the curvature tensor, we have 

R(X,  V ) Z  =R(X,  Y ) Z  - ~ ( X ) ~ ( Z ) f  ~ 

+ v(Y)v(z)  - g(ff, 2)v(Y)  + 

Hence, the above remark and a direct calculation give 

R(X,  Z ) Z  =(F~ o ~-){g(Z, Z ) X  - g(X, Z ) Z }  

+ ((F2 o 7r) - 1){g(X, ¢Z)OY - g(Y, CZ)¢X + 2g(X, ¢Y)¢Z} 

+ ((F, o 7r) - 1){~?(X)~(Z)Y - ~I(Y)rt(Z)X 

+ g ( X ,  - 9 ( v ,  

concluding the proof. | 

COROLLARY 4.3: Let N(F1,F2) be a Kaehlerian generalized complex-space- 

form. I f  there exist a Sasakian manifold M and a Riemannian submersion 

~r: M -+ N in the above conditions, then F1 = F2. 

Proof By combining Theorem 3.15 and Theorem 4.2, we see that  F1 olr = F2 oTr, 

which implies F1 = F2, since zc is onto. | 

We have a similar theorem for cosymplectic manifolds, i.e., trans-Sasakian 

manifolds with a = /3  = 0. 

THEOREM 4.4: Under the above conditions, if M is a cosymplectic manifold, 

then it is a generalized Sasakian-space-form M( f l ,  f2, f3) with functions 

A=FloTr, A=F2o , f3=FloTr. 

Proof: It can be done in a similar way to that  of Theorem 4.2, by now taking 

into account (2.7) and (2.8). | 
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In particular, if N is a Kaehlerian manifold, it is well-known that  M = N x R 

with its usual product almost contact metric structure (see [2], p. 77) is a cosym- 

plectic manifold. Moreover, if we denote by ~r the natural projection from M into 

N, 7r: M --+ N is a Riemannian submersion satisfying all the above conditions. 

Therefore, we have the following corollary: 

COROLLARY 4.5: Let N(F1,F2) be a Kaehlerian generalized complex-space- 

form. Then M = N x R is a generalized Sasakian-space-form with functions 

f l = F l o ~ ,  f2=F2oTr, f 3=Flo~ .  

Now, we will obtain more examples of generalized Sasakian-space-forms by 

using warped products (see [11]). 

Given an almost Hermitian manifold (N, J, G), the warped product M =  R × f N, 

where f > 0 is a function on R,  can be endowed with an almost contact metric 

structure (¢, ~, ~/, gf). In fact, 

(4.5) gf = 7c* (gR) + ( f  o ~r)2 a*(G) 

is the warped product metric, where 7r and a are the projections from R x N 

on R and N, respectively; ¢(X) = (Ja, X)*, for any vector field X on M, and 

= O/Ot, where t denotes the coordinate of R. 

We need the following two lemmas from [11]: 

LEMMA 4.6: Let us consider M = B × f F and denote by V, V B and V F the 

Riemannian connections on M, B and F. If X, Y are vector fields on B and 

V, W are vector fields on F, then: 

(1) V x Y is the lift of V ~ Y. 

(2) V x V  = V v X  = ( X f / f ) V .  

(3) The component of V v W  normal to the fibers is - (gf(V,  W)/ f )grad f .  

(4) The component of V v W  tangent to the fibers is the lift of V ~ W .  

LEMMA 4.7: Let M = B x / F  be a warped product, with Riemann curvature 

tensor R. Given fields X, Y, Z on B and U, V, W on F, then: 

(1) R(x ,Y )Z  is the lift of RB(X,Y)Z. 
(2) R(V, X ) Y  = - ( H f  (X, Y ) / f ) V ,  where H f is the Hessian of f .  

(3) R(X,  Y )V  = R(V, W ) X  = O. 

(4) R(X,  V ) W  = -(9f(V,  W ) / f ) V x  (grad f) .  

(5) n(v, w ) u  = nF (v, w ) u  
+(9f(grad f, grad f ) / f2){gf (V,  U)W - gf(W, U)V}. 



170 P. ALEGRE,  D. E. BLAIR AND A. C A R R I A Z O  Isr. J. Math. 

THEOREM 4.8: Let N ( F1, F2 ) be a generalized complex-space-form. Then, the 
warped product M -- R × I N, endowed with the almost contact metric structure 
( ¢, ~ , ~, 9 f ) , is a generalized Sasakian-space-form M ( f l , f 2 , f3) with functions 

f l  - -  ( F 1 0  7"i") -- f t2  /7' 2 0  71" ( F  1 0  71") -- ft2 fit 
f2 , f 2 -  f 2 '  f z =  fa +-7-" 

Proof: For any vector fields X, Y, Z on M, we can write X = ~(X)~ + U, 
Y = ~(Y)~ + V, Z = ~(Z)( + W, where U, V, W are vector fields on N. Then, 
by virtue of Lemma 4.7, and by taking into account that R is fiat, we have 

R(X,  Y )Z  =0(X)0(Z) Hf(~, ~) V - 7I(Y)~(Z) Hf  (~, ~) U 
f f 

(4.6) 9f(V, W) 9 f ( ~  W)~/(Y)V~ grad(f) f r/(X)V~ grad(f) + 

M(grad(f),  grad(f)) 
+ RN(u, V)W + f2 {gy (U, W)V - 9f(V, W)U}. 

Let us first notice that grad(f) = f'~, since f = f(t). Therefore, 

(4.7) V~ grad(f) = f"~, 

since, from Lemma 4.7, we know that V ~  = 0. Moreover, 

(4.8) Hf(~,~) = g(V~ grad(f),~) = f",  gf(grad(f),grad(f)) = f,2. 

Now, from (4.5)-(4.8), and by using that N is a generalized complex-space- 
form, we have 

R(X,  r ) Z  =~{,7(X),7(Z)V - ~(Y)~(Z)U 

+ feg(U, W)rI(Y)~ - f2g(V, W)o(X)~} 

(4.9) + ( V  1 o 7r){g(V,  W)U - 9(U, W)V}  

+ (F2 o 7r){g(U, J W ) J V  - g(V, J W ) J U  + 2g(U, J Y ) J W }  

+ ( f f  ) 2{f2 g(U, W)V - f2 g(V, W)U}. 

Then, the proof can be finished with a straightforward calculation from (4.9), 
by taking into account (4.5) and the relationship between X, Y, Z and U, V, W. 
| 

In particular, if N(a, b) is a generalized complex-space-form with constant 
functions, then we have a generalized Sasakian-space-form 

f,2 b a -  f,2 f,, 7 + T )  ' 
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with non-constant functions. Moreover, if N(c) is a complex-space-form, we 

obtain 
M ( c - 4 f ' 2  c c - 4 f  '2 f " )  

~]~ ' 4f2,  4 f  ~ + - f -  . 
Hence, for example, the warped products R xf  C n, R xf  cpn(4)  and 

R x f CHn(-4)  are generalized Sasakian-space-forms with functions 

- /'2f~ , '~-~ fl  = f 2 = 0 ,  f 3 = -  + f~, 
1-/'~ 1 ~ /_2 

fl  = f2 f2 = f3 = + f~ f 
f l  ~ f2 = -1 ~ f" = --F' f 3 =  f2 + f f 2  ~ 

respectively. 

Therefore, this method provides us with a wide range of examples of generalized 

Sasakian-space-forms with arbitrary dimensions and non-constant functions. Let 

us observe that, in general, f2 ~ f3 in the above examples, and so Theorem 3.4 

does not impose any restriction in this case. 

If f = 1, the warped product R x / N  is isometric to the usual Riemannian 

product N x R, and so we can deduce from Theorem 4.8 that the condition of 

N being Kaehlerian in Corollary 4.5 is not necessary, and that result is true for 

any generalized complex-space-form. 

On the other hand, the following proposition gives us some information about 

the structure of these warped products: 

PROPOSITION 4.9: Let N be an almost Hermitian manifold. Then, R x f N is a 
(0,/3) trans-Sasakian manifold, with/3 = f ' /  f ,  if and only if  N is a Kaehlerian 
manifold. 

Proof." By virtue of Lemma 4.6, a direct calculation gives 

/ ,  
(VxO)V = -)-{g/(r, CX)~ - ~(r)¢X) + (V~ J)V, 

where we are using the same notation as in the proof of Theorem 4.8. Then, the 

proof ends by comparing this equation with (2.4). | 

In particular, if f = 1, we obtain that N x R is cosymplectic if and only if N 

is a Kaehlerian manifold [5]. 

We conclude this section with a study of Bianchi's identities for a generalized 

Sasakian-space-form. 

First, we can see from (3.1) that we do not obtain any special conditions on the 

functions of a generalized Sasakian-space-form from the first Bianchi identity: 

R(X,  Y ) Z  + R(Y, Z ) X  + R(Z, X ) Y  = O. 
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We then consider Bianchi's second identity, 

O'w,x ,y(VwR)(X,  Y)Z = O, 

where O" represents the cyclic sum on W, X, Y. If we denote 

R1 (X, Y)Z = g(Y, Z)X - g(X, Z)Y, 

Rz(X, Y)Z = 9(X, CZ)¢Y - 9(Y, +Z)¢X + 29(X, ¢Y)OZ, 

R 3 ( x .  Y ) z  = ,~(x) ,~(z )z  - , l ( z ) , 7 ( z ) x  + 9 ( x ,  z ) ~ ( z ) ~  - g(~. z),l(x)~. 

then, the second Bianchi identity for a generalized Sasakian-space-form looks like 

O'w,x,y {W(f,)R, (X, Y)Z + f2(VwR2)(X, Y)Z + W(f2)R2(X, Y)Z 

(4.10) + f3(VwR3)(X,Y)Z + W(f3)R3(X,Y)Z} = O, 

since (Vw R1)(X, Y)Z = O. 
If we first put in (4.10) W, X, Y, Z vector fields on M orthogonal to ~, then 

O'w,x,v { W ( f l ) {9(Y, Z)X - 9( X, Z) Y } 

+ W(f2){9(X, OZ)OY - 9(Y, OZ)¢X + 29(X, CY)OZ} 

+ f2{g(X, (Vw¢)Z)¢Y + g(X, ¢Z)(VwO)Y - g(Y, (VwO)Z)OX 

- g(Y, C z ) ( v ~ ¢ ) x  + ~g(x, ( v w ¢ ) z ) ¢ z  + 29(x, C Y ) ( V w ¢ ) Z }  

+ f3{g(X,  z )g (Y ,  Vw~)~ - g(Y, z)9(x, V w ¢ ) ¢ } }  = 0. 

Now, we choose unit vector fields X, Y such that Y is orthogonal to X, CX, and 

we put Z = X and W = CY. Then, by taking the inner product by CY and by 

CX, after a long calculation we obtain 

(4.11) Y(fl)  - 3f29(OY, (VxO)X) = 0, 

(4.12) - 2X(/2) + 3f2{9(OZ, (VyO)X)) + 9(X, (VCYq~)Y)} = 0. 

On the other hand, if we put in (4.10) W = ~ and X, Y, Z orthogonal to ~, we 

get 

~(fl){9(1% Z)X - 9(X, Z)Y } 

+ ~(f2){g(X, CZ)¢Y - 9(Z, CZ)¢X + 29(X, CY)¢Z} 

+ f2{g(X, (V~¢)Z)¢Y + 9(X, ¢Z)(V~O)Y - 9(Z, (V~O)Z)OX 

- g(Y, ¢Z)(V~O)X + 29(X , (V~O)Y)OZ + 2g(X, ¢Y)(V~¢)Z} 

+ f3{9(X, Z)9(~; V~)~ - 9(Y, Z)9(X , V~)~} 
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(4.13) 

- X(fl)g(Y, Z)¢ + X(f3)g(}; Z)¢ 

+ A{9(Y, CZ)(Vx¢)(  - g(¢, (Vx¢)Z)¢Y + 2~(Y, (Vx¢)¢)¢Z} 

+ f3{-g(Z, V x [ ) Y  + g(Y, Z)Vx[}  + Y(dl)g(X, Z)~ - Y(f3)g(X, Z)[ 

+ f2{g(~, (~yO)Z)¢X - g(X, CZ)(Vy¢)~ + 29(~, (VyO)X)ÙZ} 

+ f3{g(Z, Vy~)X - g(X, Z)Vy~} = O. 

If we choose X and Y unit vector fields such that  Y is orthogonal to X, CX, 

Z = X, and we multiply by ~, we obtain 

(4.14) f3g(Y, v~¢)  + Y(f~)  - Y(J3) = 0. 

We put again Z = X, and we multiply (4.13) first, by Y and second, by CY. 

Then, we have 

(4.15) 

(4.16) 

¢(fl) + y3{g(x, vx¢) + g ( v y ¢ , Y ) }  = 0, 

f2g(¢, ( v x o ) x )  + 5 g ( V y ¢ ,  Cy)  = 0. 

Now, we can prove the following result: 

THEOREM 4.10: Let M (fl  , f2, f3) be a generalized Sasakian-space-form. I f  M 

is a (0, fl) trans-Sasakian manifold with dim(M) _> 5, then X ( f i )  = 0 for any X 

orthogonal to ~, i = 1, 2, 3, and the following equations hold: 

(4.17) 

(4.18) 

Proof: 

4(/1) + 2flA = 0, 

4(/2) + 2fl/~ = 0. 

By using (2.4), we see that  

g(0Y, (VxÙ)X) = g(OY, fl(g(¢X, X)~ - ~/(X)OX)) = 0, 

for any vector field Y orthogonal to X, 4, and 

g(¢~: ( v y ¢ ) x ) )  + g ( x ,  ( v , y ¢ ) y )  = 

g(OY, fl(g(OY, x ) ~  - ~ / (x )oY))  - g(X, fl(g(O2y, y ) ~  _ ~ ( y ) ¢ 2 y ) )  = 0, 

for any X, Y orthogonal to ~. Therefore, from (4.11) and (4.12) we deduce that  

X( f l )  = X(f2) : 0, for any vector field X orthogonal to 4. 

On the other hand, since (2.5) implies that  V ~  = 0, from (4.14) we know that  

X( f l )  - X(f3) = 0, for any X orthogonal to ~. But, as X( f l )  = 0, we have that  

X(f3) = 0. 
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Finally, by a similar way, we can obtain equations (4.17) and (4.18) from (4.15) 

and (4.16). | 

For example, it is easy to see that  the functions appearing in Theorem 4.8 

satisfy equations (4.17) and (4.18). 

In particular, if we consider /~ = 0 in the above theorem, we can state the 

following result for cosymplectic generalized Sasakian-space-forms: 

COROLLARY 4.11: Let M(fx,  f2, f3) be a generalized Sasakian-space-form. If  M 

is a connected cosymplectic manifold with dim(M) _> 5, then the functions f l ,  f2 
axe constant and f3 only depends on the direction of ~. 

We then obtain an important result for complex-space-forms as a consequence 

of Corollary 4.11: 

COROLLARY 4.12: Let N(F1,F2) be a connected Kaehlerian generalized 
complex-space-form with dim(N) > 4. Then, N is a complex-space-form. 

Proof: By virtue of Corollary 4.5, we know that  M = N × R is a generalized 

Sasakian-space-form with f l  = F1 oTr and f2 = F2 oTr, where 7r denotes the natural 

projection from M on N. However, under these conditions, M is a connected 

cosymplectic manifold with dimension greater than or equal to 5. Therefore, 

Corollary 4.11 implies that  f l  and f2 must be constant, and so F1 and F2, since 

zr is onto. 

On the other hand, it can be proved that  the holomorphic sectional curvature 

of a generalized complex-space-form is given by F1 +3F2, which is now a constant. 

Then, N is a complex-space-form. | 

In fact, we can find this result, proved for generalized complex-space-form with 

dimension greater than or equal to 6 and F2 non-identically zero, as Theorem 12.7 

of [16]. In our case, the manifold has to be Kaehlerian, but the result also 

holds for dimension 4, and F2 could be zero (in such a case, F1 = F2 = 0; the 

model of such a complex-space-form is Ca). Therefore, Corollary 4.12 gives some 

additional knowledge. 

Finally, let us notice that,  from equations (4.17) and (4.18), we can get some 

information about the functions fi  of a generalized Sasakian-space-form with a 

(0,/~) trans-Sasakian structure. 

Actually, by integrating with respect to t in (4.17), we deduce that,  locally, 

f l  = F1 - 2 / l~ f3dt, 
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where F1 is a function such that 0F1/Ot = O. 

Similarly, from (4.18) we have that, locally, 

f2 = F2e -2 s ~at, 

with F2 such that  0F2/cOt = O. 

175 

5. G e n e r a l i z e d  Sasak i an - space - fo rms  a n d  c o n f o r m a l  changes  of  metric  

Let (M, ¢,~, ~,g) be an almost contact metric manifold. We now consider a 

conformal change of metric 

(5.1) g. = p2g, 

where p is a positive function on M. We can easily prove that, if we put 

(5.2) ¢*=¢ ,  ~*=~, 7 ' =  P~, 

then (M, ¢*, ~*, 7*, g*) is also an almost contact metric manifold [17]. 

It is well-known (for instance, see [4]) that, if we denote by V* the Riemannian 

connection associated with g* and by R* the curvature tensor of g*, then we have 

V*xY = V x Y  + w ( X ) Y  + w(Y )X  - g(X, Y)U, 

(5.3) R* (X, Y ) Z  =R(X,  Y ) Z  - t(Y, Z ) X  + t(X, Z )Y  

- g(Y, Z ) T X  + g(X, Z)TY,  

for vector fields X, II, Z on M, where 

(5.4) 

(5.5) 

U = grad(log(p)), w = d(log(p)), 

T X  = V x U  - .4X)U + ~w(U)X, 

t(X,  Y) = ( V x w ) Y  - w(X)w(Y) + ~w(U)g(X, Y). 

Moreover, from (5.4) and (5.5) we get 

(5.6) 

- t (Y ,  Z ) X  + t(X, Z ) Y  - g(Y, Z ) T X  + g(X, Z ) T Y  = 

-w(U){g(Y,  Z ) X  - g(X, Z )Y}  

- { w ( X ) w ( Z ) Y  - w(Y)w(Z)X  + g(X, Z)w(Y)U - g(Y, Z)w(X)U} 

+ 9(VxU, z ) Y  - g(vvu ,  z ) x  + g(x, Z)VyU - ~(Y, Z)VxU. 
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Hence, if (M, ¢, ~, ~, 9) if a generalized Sasakian-space-form, with functions f l ,  

f2, f3, by using (3.1), (5.1), (5.2), (5.3) and (5.6), we can write 

n * ( x , Y ) z  - f~ - ~ ( v )  p~ {9*(Y, z ) x  - 9*(x, z)Y} 

~{g*(x, ¢*z)¢*Y - g*(L ¢*z )¢*x  + 2g*(X, ¢*Y)¢*z} + 

(5.7) + ~ { ~ * ( x ) ~ * ( z ) Y  - ~I * (Y)~I * ( Z ) X  

+ 9*(X, Z)q*(Y)~* - 9*(Y, Z)q* (X)~* } 

- {~(x)o~(z)Y - o~(Y)~,(z)x + g(x ,  z )~ (Y )U  - g(Y, z ) ~ ( x ) u }  

+ g (Vxu ,  z ) Y  - g ( v v u ,  z ) x  + 9(x ,  z ) v y u  - 9(Y, Z)VxU,  

for vector fields X,  ~; Z. 

Let us now suppose that there exists a function # on M such that U = #~, 
which implies that w = #~ and w(U) = #2. Then, 

(5.8) w ( X ) w ( Z ) Y  - ~(Y)o~(Z)X + 9(X,  Z ) w ( Y ) U  - 9(}, Z ) w ( X ) U  = 

~ { , l*(x) ,~*(z)Y - , F ( Y ) , F ( z ) x  + 9*(x ,  z),7*(y)~* - 9*(Y, z)~*(x)~*}.  

On the other hand, Vx  U = #~Tx ( +  X (#)~, for any vector field X, and clearly, 

9 ( ~ x ~ ,  ~) = 0. Therefore, we will suppose in addition that the function # is a 
constant and that there exists a function/3 on M such that Vx~ = / 3 ( X - ~ ( X ) ~ ) ,  
for any X. Hence, V x U  = #/3(X - q(X)~) and 

9(VxU, z ) Y  - 9 ( v y u ,  z ) x  + 9(x ,  z ) v y u  - 9(Y, z ) v x u  = 
2#/3 
p2 {g*(Y, z ) x  - g * ( x ,  z ) Y }  

(5.9) #/3 p~ {~*(x)~*(z)Y - ~*(z )~*( z )x  

+ 9 * ( X ,  Z)~*(Y)~*  - 9*(Y, Z)7/* (X)~*}. 

From (5.7), (5.8) and (5.9), we get 

R*(X,Y)Z = f l  - -  # 2  _ 2 # / 3  p2 {g*(y, z ) x  - 9 * ( x ,  z ) Y }  

+ p~{g*(X, ¢*Z)O*Y - g*(Y, ¢*Z)¢*X + 2g*(X, 0"Y)¢* Z} 

f3 - #2 _ #/3 -~ p2 { ,7*(x) ,F(z)Y - ~*(Y)~*(z)x 

+9*(X, Z)q*(Y)~* - 9 *(Y, Z)~/* (X)~* }. 
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We have then proved the following result: 

THEOREM 5.1: Let M ( f l ,  f2, f3) be a generalized Sasakian-space-form such that 

there exists a function ~ on M satisfying V x~  =/3 (X  - ~(X)~), for any vector 

field X .  Let us consider a positive function p on M and the almost contact metric 

structure given by (5.2). Let U = grad(log(p)) and w = d(log(p)) be. If  there 

exists a constant k ~ 0 such that U = k~, then (M, ¢*, ~*, ~*, g*) is a generalized 

Sasakian-space-form M ( f ;  , f.~ , f~ ) with functions 

f ;  = f l  - k 2 - 2 k / )  f2 f3 - k 2 - k/~ 
p2 ' f2----p2' f ~ - -  p2 

We now show that  we can find almost contact metric manifolds satisfying all 

the above conditions. 

Example 5.2: Let N(c) be a complex-space-form and put M = R x f  N,  with 

f = f ( t )  > 0. If we consider on the warped product  M the almost contact metric 

structure described above, we already know that  it is a generalized Sasakian- 

space-form M ( f l ,  f2, f3) with functions 

f l -  c - 4 f  '2 c c - 4 f f  2 f "  
4 f  2 , f 2 =  4 f  2, f 3 -  4f--------- 7 -  + - f - .  

Moreover, from Proposition 4.9, we also know that  it is a (0, 3) trans-Sasakian 

manifold with 3 -- i f~ f ,  and so 

Vx = 

for any X. 

On the other hand, if we put p = p(t) > O, then 

U = (log(p))rO = - ~ ,  

and so there exists a constant k such that  U = k~ if and only if p(t) = Ke  kt, where 

K > 0 is a constant. In such a case, by virtue of Theorem 5.1, (M, ¢*, ~*, ~]*, g*) 

is a generalized Sasakian-space-form with functions 

c - 4 ( f '  + k f )  2 c 
f~ = (2Kfekt)2 ' f ~ -  (2Kfekt)  2, 

c - 4 ( f '  + k f )  2 + 4 f ( k f '  + f " )  
f~ = (2K fekt)2 

Actually, we can get some other examples of generalized Sasakian-space-forms 

obtained through conformal changes of metrics, without the assumption of # 
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being a constant. In fact, if N(c) is a complex-space-form, M = R x / N ( c )  

and we choose p = p(t), we have already pointed out that U = (p'/p)~, and so 

# = p'/p. Moreover, it can be proved that X(p ' /p)  = ~(X)(log(p))", for any 

vector field X on M, and so 

p ' / '  
(5.10) v x v  = 7 ( x  - ~(x)~) + ~(X)(log(p))"~. 

Then, from (5.7), (5.8) and (5.10), we obtain 

1 c _ 

1 c 
+ ~  ~fi{g*(X, ¢*Z)¢*Y - g*(Y, ¢*Z)¢*X + 2g*(X, ¢*Y)¢*Z} 

c , .  1 (~_~ _ - ~  + p , ] 2 +  + + (log(p))") 
p ,  7 

• { ~ * ( x ) ~ * ( z ) r  - ~*(v)~*(z)x  + 9 * ( x ,  z ) ~ * ( r ) g  - g*(r, z ) ~ * ( x ) g  }, 

which implies the following theorem. 

THEOREM 5.3: Given a complex-space-form N(c) and two positive functions 

f = f ( t ) ,  p = p(t), the conformal change of metric with function p endows the 

warped product M = R x y N(c) with the structure of a generaIized Sasakian- 

space-form M ( f ;  , f f  , f~ ) with functions 

f ; =  1 c _ + , ] ~ - p 2 4 f 2 ,  

Moreover, there are other very useful metric transformations in contact 

Riemannian geometry, such as the D-homothetic deformations. Given an almost 
contact metric manifold (M, ¢, (, ~, g), such a deformation is defined by 

(5.11) ¢ . = ¢ ,  ~ , = 1 ~ ,  ~ . = a ~ ,  g * = a g + a ( a - 1 ) ~ ® ~ ,  
a 

where a is a positive constant (see [15]). It is clear that (M, ¢*, ~*, ~/*, g*) is also 

an almost contact metric manifold. 

Let us suppose that (M, ¢, ~, ~, g) is a (0,/3) trans-Sasakian manifold and put 

a ~ 1 to have a non-trivial D-homothetic deformation. Computing the Rie- 
mannian connection V* of g* and using equations (2.5)-(2.6), it can be proved 
that 

a -  
(5.12) V~Y = VxY + 1/3g(¢X, CY)~. 

a 
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Therefore, by using also (2.4) we can see that the corresponding curvature tensors 

satisfy the equation 

R * ( X , Y ) Z  = R ( X , Y ) Z  

a - 1  
(5.13) + - - { X ( / 3 ) g ( ¢ } ;  ¢Z)¢ - Y(/3)g(¢X,  CZ)~} a 

] _ a -  
+ - - /3~{9(¢Y,  CZ)X  - g(¢x, Cz)y}, 

a 

for any vector fields X, Y, Z on M. Moreover, if M is a generalized Sasakian- 

space-form with functions fl ,  f2, f3, from (3.1), (5.11), (5.13) and a direct com- 

putation, we get 

+ h{g*(X,  ¢*Z)O*Y - g*(Y, ¢*Z)O*X + 2g*(X, ¢*Y)O*Z} 
a 

(5.14) + f3 + (fl +/3~)(a - 1) as {~* (x )~* ( z )Y  - ~ * ( Y ) ~ * ( z ) x }  

+ J3 {g*(X, Z)q*(Y)~* - g*(Y, Z)r/*(X)~*} 
a 

+ ~ { Y ( 9 ) ~ * ( x ) ~ * ( z ) ~ *  - x( /3)~*(y)~*(z)~*} 

a - 1  
- - - { Y ( 9 ) g *  ( x ,  z)~* - x(/3)g*(Y, z)~* }. 

a 

Hence, if ¢{ is a constant, the last two lines in the above equation vanish, and 

so (M, ¢*, ~*, r;*, g*) is a generalized Sasakian-space-form if and only if 

f 3  -~- ( f l  -[- ~2)(a - 1) f 3  

which is equivalent to 

(5.15) 

a2 : ---~ , 

Ii - A + #  ~ =0. 

For example, let M be a warped product R x f  N(c), N(c)  being a complex- 

space-form. In such a case, M is a (0,/3) trans-Sasakian manifold with/3 = f ' / f ,  

and so/3 equals a constant k if and only if ](t) = K e  kt, K > 0, which implies that 

f " / f  = k 2. But, from Theorem 4.8, we know that f3 = f l  + f " / f .  Therefore, 

equation (5.15) is satisfied and, by virtue of (5.14), we can state the following 

theorem: 

THEOREM 5.4: Given a complex-space-form N(c) ,  a positive constant a and 

the function f ( t )  = Ke  kt, k C R ,  K > O, the D-homothetic deformation with 



180 P. ALEGRE, D. E. BLAIR AND A. CARRIAZO Isr. J. Math. 

constant a endows the warped product M = R x / N(c) with the structure of a 

generalized Sasakian-space-form M ( f f  , f~ , f~ ) with fimctions 

f~ - 4aK2e2kt f~ = f~ -- 4aK2e2kt. 

Notice that if N(c) is a connected complex-space-form with dim(N) > 4 and 

c # 0, then the almost contact metric manifold (M, ¢*, ~*, ~*, g*) obtained above 

is a connected generalized Sasakian-space-form with dim(M) _> 5 and functions 

f~ = ]~ non-identically zero. Therefore, if 

(5.16) 9*(X, V~:C) = 0, 

for any vector field X orthogonal to ~*, then by virtue of Theorem 3.4, f~ and 

f~ should be constant functions. But, from (2.5), (5.11) and (5.12), a direct 

calculation shows that equation (5.16) can be written as kg(X,  X) = 0, and so it 

holds if and only if k = 0. And, obviously, in such a case the above functions f~ 

and f~ are constant and then M is a cosymplectic-space-form. 

On the other hand, if we consider now a warped product M = R ×f  N(c),  

with non-constant function/3 = f ' / f ,  and we apply a D-homothetic deformation 

given by (5.11), by taking into account that X (/3) = 1 / a ~/* (X)/3', equation (5.14) 

becomes 

a - 1 2  . 

+ h{g*(x ,  ¢*z)¢*y - g*(Y, ¢*z)¢*x + 2g*(X, ¢*Y)¢* Z} 
(5.17) a 

]3 + (fl +/32)(a - 1) 
+ a2 {~/* (X)~/* (Z)Y - 7" (Y)v* (Z)X } 

+ a f3 - ( a -  1)/3' 
a2 {g*(X, Z)~?*(Y)~* - g*(Y, Z)~*(X)~*}. 

Therefore, (M, ¢*, ~*, r/*, g*) is now a generalized Sasakian-space-form if and 

only if f 3+( f l+ /32 ) ( a -1 )  = a f 3 - ( a - 1 ) ~ ' ,  which is equivalent to f 3 - f l  = ~32+~ '. 

But, by virtue of Theorem 4.8, it is easy to see that this equation is always 

satisfied, and we have proved the following result: 

THEOREM 5.5: Given a complex-space-form N(c),  a positive constant a and a 

function f = f ( t )  > O, the D-homothetic deformation with constant a endows 

the warped product M = R x f N(c) with the structure of a generalized Sasakian- 

space-form M ( f { ,  f~, f~ ) with functions 

ac - 4 f '2 c ac - 4 f '2 f "  
f ; -  4a2f  2 , f ~ - 4 a f 2 ,  f ~ -  4a2f------ 5 -  +a2---- ~. 
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More generally, we can also consider a warped product M = R × i N(c), N(c) 
being a complex-space-form, a function 6 = 6(t) > 0 and the structure change 
given by 

(5.18) ¢ * = ¢ ,  ~ * = ~ ,  r/*=62~, g* =62g+52(62-1)z/®T/.  

Such a deformation, which clearly generalizes the D-homothetic ones, is a par- 
ticular case of the so-called D-conformal deformations (see [14]). 

In such a case, U = grad(log(g)) = 5'/6 ~, w = d(log(6)) = 5'/5 r/and a direct 
computation gives 

( 5 2  1 5'1) 6' 
(5.19) V ~ c Y = V x Y +  /3 -62 652 g(¢X,¢Y)~+~(~(Y)X+q(X)Y),  

for any vector fields X, Y, where V* (resp. V) denotes the Riemannian connection 
associated with g* (resp. g). Similarly to the previous cases studied in this 
section, by virtue of (2.4) (2.6), (5.18), (5.19) and a straightforward calculation, 
we obtain 

6' 5' 
R*(X,Y)Z = ~-~( f l -  --~ + FI3 + F-~){g*(?:Z)X - g *(X,Z)Y} 

f2~ , : v  ¢, + ~ ' t g  t -•, Z ) ¢ * Y -  g*(Y,¢*Z)¢*X + 2g*(X,¢*Y)¢*Z} 

6' 6' __ __1/52-1 ~-gfa -~/3+F/3 F-~-  ~ 2 ( ( ~ ) '  ( ~ ) 2 ) )  "F ~ ( ~ f l  -'F -- -'F + -- 

• - 

+ 1 ( f 3  - F'){g*(X, Z)rl*(Y)~* - g*(Y, Z)/*(X)~*}, 
0 ~ 

where 
f '  62 - 1 6' 1 

/ 3 = ~  and F = / 3  62 662. 

Therefore, (M, ¢*, ~*, ~*, g*) is a generalized Sasakian-space-form if and only 
i f  

62 - 1 ~ f 3  ~-/3 ~- f l +  - + + - 

which, by virtue of Theorem 4.8, is equivalent to 

5 2 - 1  _ f " 6 2 - 1  
( / 3 2 + 9 , )  52 : 52 

=f3 - F ' ,  

But it is easy to see that the above equation is always satisfied, just by taking 
into account the definition of/3. Hence, by using again Theorem 4.8, we have 
proved a new theorem, which generalizes Theorem 5.5: 
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THEOREM 5.6: Given a complex-space-form N(c) and two functions f = f ( t )  > O, 

5 = a(t) > o, the D-conformal deformation with function (f endows the warped 

product M = R × f N (c) with the structure of a generalized Sasakian-space-form 

M ( f ; ,  f~, /~) with functions 

a S + a /  2' f~ 4a2f =' 

1 c 1 ( ( ~  5 ' ]  2 " f"  ~ "  ( ~ ) 2  
f ~ =  ~-~-(4~2 ~ + a /  - ( 7 - + - 5 - )  + 2  ) )"  

Another useful change of metric for almost contact metric manifolds, similar to 

that  of D-conformal deformations, is given by g* = 7~g + (1 - 72)~ ® ~, ~ being a 

positive function on M. It is well-known that  if (M, ¢, 4, ~, g) is an almost contact 

metric manifold, then (M, ¢,4, ~,g*) is also an almost contact metric manifold 

(for example, see [9]). Therefore, we could consider such a deformation acting 

on a warped product M = R ×f  N(c), with 7 = 7(t). But, in this situation, 

it is easy to see that  M is just transformed into another warped product, with 

function 7 f ,  and so we would not obtain new significant examples of generalized 

Sasakian-space-forms in this way. 

Finally, let us notice that  if N(c) is C n, C P  n or C H  n, then we can obtain 

particular examples of generalized Sasakian-space-forms from Example 5.2 and 

Theorems 5.3, 5.4, 5.5 and 5.6, with the corresponding expressions for the cur- 

vature tensor of M, just by putting c = 0, c = 4 or c = - 4  above, respectively. 
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